The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization¹

Yingzhen Li

Department of Engineering

Feb. 2014

¹See [1] for details.

Yingzhen Li (Department of Engineering) The Importance of Encoding Versus Training

Feb. 2014 1 / 9

Vector Quantization [2]

• Data $\xrightarrow{Quantizer}$ Features $\xrightarrow{Classifier}$ Predictions $\min_{C_k,W} \sum_k \sum_{\mathbf{x}^{(i)} \in C_k} ||W_k - \mathbf{x}^{(i)}||_2^2$

Recap

Dictionary Learning

• Data
$$\xrightarrow{Encoding}$$
 Features $\xrightarrow{Classifier}$ Predictions
 $\min_{\mathbf{s}^{(i)},D} \sum_{i} ||D\mathbf{s}^{(i)} - \mathbf{x}^{(i)}||_{2}^{2}$

• Orthogonal matching pursuit (OMP-k): restrict $||\mathbf{s}^{(i)}||_0 \le k, \forall i$

• Sparse coding: add sparsity penalty (e.g. *l*₁-penalty)

Dictionary Construction

• Sparse Coding (SC)

$$\min_{\mathbf{s}^{(i)},D} \sum_{i} ||D\mathbf{s}^{(i)} - \mathbf{x}^{(i)}||_{2}^{2} + \lambda ||\mathbf{s}^{(i)}||_{1}$$
(1)

• Orthogonal Matching Pursuit (OMP-k)

$$\min_{\mathbf{s}^{(i)},D} \sum_{i} ||D\mathbf{s}^{(i)} - \mathbf{x}^{(i)}||_{2}^{2} \quad s.t. \; ||\mathbf{s}^{(i)}||_{0} \le k, \forall i$$
(2)

• Sparse RBMs and Sparse Auto-encoders (SAEs)

$$P(\mathbf{s}^{(i)}|D, \mathbf{x}^{(i)}) \propto sigmoid(D^T \mathbf{x}^{(i)})$$
 (3)

- Randomly Sampled Patches (RP)
- Random Weights

Feature Mapping (with D fixed)

• Sparse Coding (SC)

- for new data point **x**, compute the code **s** by minimizing (1)
- define feature $f = [\mathsf{max}(\mathbf{0}, \mathbf{s}), \mathsf{max}(\mathbf{0}, -\mathbf{s})]$
- OMP-k: as above (by solving (2))
 - $\mathbf{f} = [\max(\mathbf{0}, \mathbf{s}), \max(\mathbf{0}, -\mathbf{s})]$
- Soft Threshold (T)

•
$$\mathbf{f} = [\max(\mathbf{0}, D^T \mathbf{x} - \alpha), \max(\mathbf{0}, -D^T \mathbf{s} - \alpha)]$$

- 'Natural' Encoding
 - $\mathbf{f} = [sigmoid(D^T \mathbf{x} + \mathbf{b}), sigmoid(-D^T \mathbf{s} + \mathbf{b})]$

< 回 ト く ヨ ト く ヨ ト

Results (with L2-SVM)

Encode Dict	Natural	SC	OMP-1	OMP-10	Т
R	70.5	74.0	65.8	68.6	73.2
RP	76.0	76.6	70.1	71.6	78.1
RBM	74.1	76.7	69.5	72.9	78.3
SAE	74.8	76.5	68.8	71.5	76.7
SC	77.9	78.5	70.8	75.3	78.5
OMP-1	71.4	78.7	71.4	76.0	78.9
OMP-2	73.8	78.5	71.0	75.8	79.0
OMP-5	75.4	78.8	71.0	76.1	79.1
OMP-10	75.3	79.0	70.7	75.3	79.4

Table: Cross-validation results (accuracy in %) on CIFAR-10.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Results (with L2-SVM)

Encode Dict	Natural	SC ($\lambda=1$)	T ($\alpha = 0.5$)
R	91.9	93.8	93.1
RP	92.8	95.0	93.6
$SC\;(\lambda=1)$	94.1	94.1	93.5
OMP-1	90.9	94.2	92.6

Table: Test accuracies (%) for the NORB jittered-cluttered dataset.

(日) (同) (日) (日)

Results (with L2-SVM)

Figure: Performance of sparse coding and soft-threshold activations on CIFAR-10.

Feb. 2014 8 / 9

Conclusion

- Sparse coding as the encoder
 - Virtually any training algorithm can be used to create a suitable dictionary.
 - Yielding better representations with small training set.
- Encoder with dictionary can often be competitive with sparse coding.
 - VQ: ensure the tracking of local features

Adam Coates and Andrew Y. Ng.

The importance of encoding versus training with sparse coding and vector quantization.

In ICML, 2011.

 Ernest Mwebaze, Petra Schneider, Frank-Michael Schleif, Sven Haase, Thomas Villmann, and Michael Biehl.
 Divergence based learning vector quantization.
 In ESANN, 2010.