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Restricted Boltzmann Machine

Deep Learning

From feature engineering to feature learning

Layer-wise training of very deep networks

Promising for AI?
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Restricted Boltzmann Machine

Commercialization

Microsoft’s breakthrough in speech
recognition

‘Google Brain’

Baidu’s Institute of Deep Learning
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Restricted Boltzmann Machine

Neural Networks

Discriminative models

feed-forward networks (1950 - 1980s)

Generative models

Bayes belief networks (1985)
Sigmoid belief nets (1996)

Helmholtz machine (1995)

Undirected graphical models

Markov random field (1980)
Boltzmann machine (1986)
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Restricted Boltzmann Machine

Neural Networks

Figure: Feed-forward Nets
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Restricted Boltzmann Machine

Neural Networks

Figure: Bayes Nets
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Restricted Boltzmann Machine

Neural Networks

Figure: Helmholtz machine
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Restricted Boltzmann Machine

Neural Networks

Figure: Boltzmann machine
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Restricted Boltzmann Machine

Restricted Boltzmann Machine

P(x,h|Θ) =
1

Z (Θ)
exp (−E (x,h; Θ)) (1)

E (x,h; Θ) = −hTW x− bTx− cTh

Θ = {W ,b, c}
Z (Θ) =

∑
x,h exp (−E (x,h; Θ)) is often intractable
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Restricted Boltzmann Machine

Restricted Boltzmann Machine

Maximum likelihood learning

Θ∗ = arg max
Θ

logP(x|Θ), x ∼ PD (2)

Gradient descent

∇Wij
logP(x|Θ) = 〈hixj〉PD

− 〈hixj〉P (3)

Difficult to sample from P DIRECTLY
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Contrastive Divergence

Contrastive Divergence (Geoff Hinton)

Difficult to sample from P DIRECTLY

⇒ try to approximate that expectation!

Gibbs sampling for k sweeps

k = 1 (CD-k) works well
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Contrastive Divergence

MCMC: Gibbs Sampling

Iteratively ”alternate” between states

xti ∼ P(xi |xt1, ..., xti−1, x
t−1
i+1 , ..., x

t−1
n )

no rejection
the chain is ergodic (aperiodic + positive recurrent) and
irreducible
can reach the equilibrium distribution P∞ = P

denote the sampling procedure as the transition operator T :

xk ∼ T kPD

Pk = T kPD

P∞ = T∞PD
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Contrastive Divergence

“Truncated” Chain (Geoff Hinton)

Run the chain for k transitions (CD-k)

Block Gibbs sampling:

P(hi |x,Θ) =sigm(ci + Wi ·x)

P(xj |h,Θ) =sigm(bj + hTW·j)
(4)

sigm(x) = (1 + exp−x)−1
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Contrastive Divergence

“Truncated” Chain (Geoff Hinton)

Run the chain for k transitions (CD-k)

∇Wij
logP(x|Θ) ≈ 〈hixj〉PD

− 〈hixj〉Pk

〈hixj〉PD
≈ 1

M

∑
m h(m)

i x(m)
j

〈hixj〉Pk
≈ 1

M

∑
m h(m,k)

i x(m,k)
j
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Contrastive Divergence

“Truncated” Chain (Geoff Hinton)

Run the chain for k transitions (CD-k)

We are approximately minimizing the objective

KL(PD ||P)− KL(Pk ||P∞)

This tells us the DIRECTION to the (local) optimum
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Contrastive Divergence

Minimizing the Energy (Yann LeCun)

High probability at x = low energy at x

“wake” gradients 〈hixj〉PD
: reduce the energy at the datapoints

“sleep” gradients −〈hixj〉Pk
: pull up the energy elsewhere

Hopefully x(m,k) will be far away from x(m)

(when the train mixes quickly)
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Contrastive Divergence

(Fast) Persistent Contrastive Divergence

Variance increases with k

CD-1 can overfit when the chain’s mixing rate is low

⇒ just run the chain without restart!
the model changes very slightly between each iterations

Use fast weights to improve mixing

use ∇ logP(x|Θ + Θfast) instead of ∇ logP(x|Θ)
use large weight decay of Θfast
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Contrastive Divergence

Advanced Models & Techniques

Models

Deep belief nets
Deep Boltzmann machines
Gaussian RBM, Gated RBM ...
Classification RBM
Deep Gaussian Process

Training Methods

Annealed importance sampling
Dropout
Hybrid objective (discriminative +
generative) Figure: Deep belief nets
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Contrastive Divergence

Possible Drawbacks (Literature, Rich & Me)

Overfitting

Hard to remove modes far away from the data
No idea about the volume of the mode

Fail to capture the uncertainty

when there’s lot of missing data

Small reconstruction error 6= high data likelihood!

Can walk away from the true model
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Expectation Propagation

Bayesian Inference

Learning with Bayes Rule:

P(Θ|D) ∝ P0(Θ)P(D|Θ)

Bayesian Inference:

P(x∗) =

∫
P(x∗|Θ)P(Θ|D)dΘ

The posterior of an RBM’s parameters is intractable

⇒ approximate that posterior
Variational inference
Expectation propagation
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Expectation Propagation

Factor Graph

p(x1, x2, x3, x4) = fA(x1, x2)fB(x2, x3, x4)fC (x4) (5)

p(xS) =
∑
x\xS

p(x), ∀S ⊂ {x1, x2, x3, x4}
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Expectation Propagation

Expectation Propagation (Tom Minka)

Define some “simple” q(x) to approximate p:

q(x1, x2, x3, x4) = f̃A(x1, x2)f̃B(x2, x3, x4)f̃C (x4) (6)

Iteratively update f̃i by minimizing KL(q\i fi ||qnew )
q\i = q/f̃i , i ∈ {A,B,C}

Moment Matching: qnew ← moments[q\i fi ]
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Expectation Propagation

Expectation Propagation (Tom Minka)

Figure: EP moment matching (fig by Rich Turner)
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Expectation Propagation

Bayesian Inference (RBM)

True posterior:

P(H ,Θ|D) ∝P0(Θ)
∏
m

P(x(m),h(m)|Θ)

=P0(Θ)
∏
m

1

Z (Θ)
exp
(
−E (x(m),h(m); Θ)

) (7)

Approximated posterior:

Q(H ,Θ) = P0(Θ)
∏
m

1

Z̃ (Θ)
f̃ (x(m),h(m); Θ) (8)
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Expectation Propagation

EP-k (Rich & Me)

Don’t touch Q(Θ) until a good estimation of Q(H)

...by updating Q(H) with EP for k times

An analogy to CD-k
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Expectation Propagation

Bayesian Inference (RBM)

x
(m)
j

bj

h
(m)
i

ci
P0(c)

P0(b)

Wij

P0(W )

m = 1 : N

Figure: Restricted Boltzmann Machine as a factor graph. We separate the
graph into three subgraph (dashed rectangles) for EP approximation.
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Expectation Propagation

Bayesian Inference (RBM)

Bayesian point estimate (BPE)

P(h∗|D, x∗) ≈ P(h∗|x∗; Θpost), Θpost ∼ Q(Θ) (9)

Approximate model averaging

P(h∗|D, x∗) ≈
∫

Θ

P(h∗|x∗; Θpost)Q(Θ)dΘ (10)

⇒ approximate this predictive distribution by EP again!
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Expectation Propagation

Future Works

Finish the experiments on biased RBM and get it published!

My PhD thesis would be:

theoretical analysis of deep learning in a Bayesian flavour
denoising & filling the missing data
fast & parallel algorithms (like that of TrueSkillTM)
extension to continuous hidden states deep models

Deep Gaussian Process
Boltzmann machines with other continuous energy functions,
e.g. Gaussian CDF
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