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Overview

@ Restricted Boltzmann Machine
@ Contrastive Divergence

@ Expectation Propagation
@ paper in preparation
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Deep Learning

o From feature engineering to feature learning
@ Layer-wise training of very deep networks

@ Promising for Al?
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Commercialization

M® Microsoft

@ Microsoft's breakthrough in speech

recognition GO lee

@ ‘Google Brain’

@ Baidu's Institute of Deep Learning
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Neural Networks

Discriminative models

o feed-forward networks (1950 - 1980s)
@ Generative models

o Bayes belief networks (1985)

o Sigmoid belief nets (1996)
Helmholtz machine (1995)
Undirected graphical models

o Markov random field (1980)
e Boltzmann machine (1986)
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Neural Networks
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Figure: Feed-forward Nets
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Restricted Boltzmann Machine

Neural Networks

SPRINKLER

SPRINKLER
F 0.4 0.6

T 0.01 0.99

SPRINKLER RAIN‘

E
T
E
T

- 4 m ™

GRASS WET
T F
0.0 10
0.8 02
0.9 01
0.99 0.01

Figure: Bayes Nets
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Neural Networks
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Figure: Helmholtz machine

Yingzhen Li (University of Cambridge) On Restrict Boltzmann Machine Learning June 10, 2014 8 /31



Restricted Boltzmann Machine

Neural Networks

Figure: Boltzmann machine
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Restricted Boltzmann Machine

Restricted Boltzmann Machine

P(x,h|©) = exp (—E(x,h; 9)) (1)

Z(9)

o E(x,h;®)=—-h"Wx—-b"x—cTh
o ©={W,b,c}
o Z(©) =>_, nexp(—E(x,h;©)) is often intractable
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Restricted Boltzmann Machine

Restricted Boltzmann Machine

@ Maximum likelihood learning

O* =arg mgxlog P(x|®©), x~ Pp (2)
o Gradient descent

Vw;,logP(x[©) = (hix;)p, — (hix;)p (3)

e Difficult to sample from P DIRECTLY
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Contrastive Divergence (Geoff Hinton)

o Difficult to sample from P DIRECTLY

= try to approximate that expectation!
@ Gibbs sampling for k sweeps
e k=1 (CD-k) works well
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MCMC: Gibbs Sampling

o lteratively "alternate” between states

t t t t—1 t—1
i~ P(Xi|XT, o XE g, X X )

@ no rejection
e the chain is ergodic (aperiodic + positive recurrent) and
irreducible
e can reach the equilibrium distribution Py, = P
@ denote the sampling procedure as the transition operator T:
o Xk ~ TkPD
o Po=TkKPp
o P =T>Pp
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Contrastive Divergence

“Truncated” Chain (Geoff Hinton)
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@ Run the chain for k transitions (CD-k)

@ Block Gibbs sampling:

ODO

<v,~/’lj>°o

SO

t = infinity

a fantasy

P(h;|x, ©) =sigm(c; + W;x)
P(x;|h,©) =sigm(b; + h™ W)

o sigm(x) = (1 +exp™)71
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Contrastive Divergence

“Truncated” Chain (Geoff Hinton)
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@ Run the chain for k transitions (CD-k)

Vw, log P(x|©) =~ (h;x;)p,

ES SN

X ~ 1 Z h(m k)x(m k)
P M m ')
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Contrastive Divergence

“Truncated” Chain (Geoff Hinton)
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@ Run the chain for k transitions (CD-k)

@ We are approximately minimizing the objective

ODO

<vl-hj>°°

a fantasy
TO

t = infinity

KL(Ppl[P) = KL(Px||Px)

@ This tells us the DIRECTION to the (local) optimum
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Minimizing the Energy (Yann LeCun)
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@ High probability at x = low energy at x
o "wake" gradients (h;x;)p,: reduce the energy at the datapoints
o “sleep” gradients —(h;x;)p,: pull up the energy elsewhere
o Hopefully x(™k) will be far away from x(™)
(when the train mixes quickly)
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(Fast) Persistent Contrastive Divergence

@ Variance increases with k

@ CD-1 can overfit when the chain’'s mixing rate is low

= just run the chain without restart!
e the model changes very slightly between each iterations

@ Use fast weights to improve mixing

o use Vlog P(x|© + Opst) instead of V log P(x|©)
e use large weight decay of Ogq;

Yingzhen Li (University of Cambridge) On Restrict Boltzmann Machine Learning June 10, 2014 18 / 31



e —, <o el E el
Advanced Models & Techniques

e Models Q©OOOO00) hs
e Deep belief nets RBM
e Deep Boltzmann machines
o Gaussian RBM, Gated RBM ... ~ QOOQO0Q) h:
e Classification RBM E
o Deep Gaussian Process

. ©O00000)
@ Training Methods A

e Annealed importance sampling '

o Dropout @OOIOOOO) x

e Hybrid objective (discriminative +
generative) Figure: Deep belief nets
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Possible Drawbacks (Literature, Rich & Me)

@ Overfitting

e Hard to remove modes far away from the data
e No idea about the volume of the mode

@ Fail to capture the uncertainty
e when there's lot of missing data

@ Small reconstruction error # high data likelihood!

@ Can walk away from the true model
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Bayesian Inference

@ Learning with Bayes Rule:
P(©|D) o Po(©)P(D|©)
@ Bayesian Inference:
Puﬂ:/mﬁ@w@mw@
@ The posterior of an RBM's parameters is intractable
= approximate that posterior

e Variational inference
o Expectation propagation
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Factor Graph

A B C

p(x1, X2, X3, Xa) = fa(x1, x2) e (X2, X3, Xa) fc (xa) (5)
p(Xs) = ZP(X)v VS C {X17X27X37X4}
x\xs
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Expectation Propagation (Tom Minka)

A B C

@ Define some “simple” g(x) to approximate p:
q(x1, X2, X3, xa) = Fa(x1, %2) f5 (%2, X3, xa) F (xa) (6)

o lteratively update 2 by minimizing KL(q\'f;||g"")
o ¢\ =q/fi,ic{A B, C} |
@ Moment Matching: g™ + moments[q\’f,-]
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Expectation Propagation

Expectation Propagation (Tom Minka)
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Figure: EP moment matching (fig by Rich Turner)
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Bayesian Inference (RBM)

@ True posterior:

P(H,©|D) xPy(©) H P(x(™ h(™|@)

Z exp ( E(x(™ h(m, @))

@ Approximated posterior:

Q(H,0) = (@) ] Z(%?(x“’”, hm.e)  (8)

m
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EP-k (Rich & Me)

@ Don't touch Q(©) until a good estimation of Q(H)
e ...by updating Q(H) with EP for k times

@ An analogy to CD-k
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Bayesian Inference (RBM)

Figure: Restricted Boltzmann Machine as a factor graph. We separate the
graph into three subgraph (dashed rectangles) for EP approximation.
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Bayesian Inference (RBM)

@ Bayesian point estimate (BPE)
P(h*[D,x*) = P(h*|x"; ©post), ©Opost ~ Q(O)  (9)

@ Approximate model averaging

P(h*|D,x") ~ /@ P(h*[x": ©,0)Q(0)dO  (10)

= approximate this predictive distribution by EP again!
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Future Works

@ Finish the experiments on biased RBM and get it published!
e My PhD thesis would be:

o theoretical analysis of deep learning in a Bayesian flavour
e denoising & filling the missing data

o fast & parallel algorithms (like that of TrueSkill™)

e extension to continuous hidden states deep models

o Deep Gaussian Process
@ Boltzmann machines with other continuous energy functions,
e.g. Gaussian CDF
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