
IT & ML: Channels, Quantizers, and
Divergences

Yingzhen Li and Antonio Artés-Rodŕıguez
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Machine Learning and Information Theory

I ML techniques in IT: BP in turbo decoding and LDPC
I IT in ML: Information Bottleneck, feature extraction, ..
I Similar problems: Covariate shift and mismatched

decoding, ...



A Mathematical Theory of Communication
A communication system model [Shannon, 1948]

A Mathematical Theory of Communication.. 

several variables-in color television the message consists of three functions 
f(x, y, I), g(r, y, I>, It&, y, 1) defined in a three-dimensional continuum- 
we may also think of these three functions as components of a vector field 
defined in the region-similarly, several black and white television sources 
would produce “messages” consisting of a number of functions of three 
variables; (f) Various combinations also occur, for example in television 
with an associated audio channel. 

2. A lransmitter which operates on the message in some way to produce a 
signal suitable for transmission over the channel. In telephony this opera- 
tion consists merely of changing sound pressure into a proportional electrical 
current. In telegraphy we have an encoding operation which produces a 
sequence of dots, dashes and spaces on the channel corresponding to the 
message. In a multiplex PCM system the different speech functions must 
be sampled, compressed, quantized and encoded, and finally interleaved 
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Fig. l-Schematic diagram of a general communication system. 

properly to construct the signal. Vocoder systems, television, and fre- 
quency modulation are oiher examples of complex operations applied to the 
message to obtain the signal. 

3. The channel is merely the medium used to transmit the signal from 
transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of 
radio frequencies, a beam of light, etc. 

4. The receiver ordinarily performs the inverse operation of that done by 
the transmitter, reconstructing the’ message from the signal. 

5. The de&nation is the person (or thing) for whom the message is in- 
tended. 

We wish to consider certain general problems involving communication 
systems. To do this it is first necessary to represent the various elements 
involved as mathematical entities, suitably idealized from their physical 
counterparts. We may roughly classify communication systems into three 
main categories: discrete, continuous and mixed. By a discrete system we 
will mean one in which both the message and the signal are a sequence of 

A particular noisy channel model is the DMC (Discrete
Memoryless Channel), characterized by (X ,P(Y |X ),Y)

p y |xY|X j i( )X Y



Reliable communications

Example: transmitting one bit over the BSC Channel
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1.5. EXAMPLE OF A DISCRETE CHANNEL AND ITS CAPACITY 

A simple example of a discrete channel is indicated in Fig. 11. There 
are three possible symbols. The first is never affected by noise. The second 
and third each have probability p of coming through undisturbed, and q 

of being changed into the other of the pair. WC have (letting LY = - [p log 

P 
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Fig. 11-Example of a discrete channel 

p + q log q] and P and Q be the probabilities of using the first or second 
symbols) 

II(x) = -I’ log P - 2Q log Q 

H,(x) = 2Qa 
We wish to choose P and Q in such a way as to maximize II(x) - H,(x), 
subject to the constraint P -I- 2Q = 1. Hence we consider 

U = -P log P - 2Q log Q - ~QCY + X(P + 2Q) 

flu -1 -= 
all -logP+x=o 

au -= 
aQ 

-2 -2 1ogQ -2a+2x=o. 

Eliminating X 

log P = log Q + a! 

P = Qe" = Q/3 

p=P 
P-i-2 

Q-L. 
P-l-2 

The channel capacity is then 

Repetition code and majority voting, q = 0.15
I n = 1, Pe = q = 0.15
I n = 3, Pe = q3 + 3q2p = 0.0607
I n = 5, Pe = q5 + 5q4p + 10q3p2 = 0.0266
I n→∞, Pe = ∑(n−1)/2

l=0

(
n
l

)
pl qn−l → 0



Limiting the rate

R = k
n = # of transmitted symbols

# of channel uses
It is possible to lower Pe fixing R and increasing n = Rk?
Example: Best Pe with R = 1
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Achievable rate and channel capacity

I Code: a (k , n) code for the channel (X ,P(Y |X ),Y) is
composed by:

1. An index set {1, . . . , 2k}
2. An encoding function fn : {1, . . . , 2k} → X n

3. A decoding function gn : Yn → {1, . . . , 2k}
I Pe(n,max) = maxi∈{1,...,2k} Pr(gn(Y n) = i |X n = fn(i))
I Achievable rate: a rate R is achievable if, ∀ε > 0 there

exists a sequence of (dnRe, n) codes and an n0 such that
Pe(n,max) < ε when n > n0

I Channel capacity: the capacity of a channel, C is the
supremum of all achievable rates



Random coding bound
I fn picked randomly: fj(i) iid from p(z)
I gn: ML (MAP) decoder
I Pe averaged over all the possible encoders can be

bounded [Gallager, 1965]

Pe ≤ e−n(−ρR+E0(ρ,p(z))) ≤ e−nE(R,p(z)) ≤ e−nE(R)

E (R , p(z)) = max
ρ

[−ρR + E0(ρ, p(z))]

E (R) = max
p(z)

E (R , p(z))

I If R < I(X ; Y )|p(x)=p(z), then E (R , p(z)) > 0. If we
define CI = maxp(x) I(X ; Y ), then

C = CI



Mutual Information, KL Divergence and Entropy
I Relative entropy or Kullback-Leibler divergence

D(p||q) =
∑
x∈X

p(x) log p(x)
q(x) = Ep

{
log p(x)

q(x)

}

I Mutual information:

I(X ; Y ) = D(p(x , y)||p(x)p(y)) = EX ,Y

{
log p(x , y)

p(x)p(y)

}

Convex function of p(y |x) if p(x) is fixed.
Concave function of p(x) if p(y |x) is fixed.

I Autoinformation or entropy (diferential entropy):

H(X ) = I(X ; X ) = EX

{
log 1

p(x)

}
(h(X ) = I(X ; X ))

I(X ; Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )



The IT game

1. Performance bounds
I The goal is to obtain lower or upper bound on the

performance on hard (sometimes NP-hard) problems
I Bounds based on statistical measures (D, I, H, ...)
I Some of the bounds are asymptotic
I Generally, it does not say anyting about the solution to

the problem
2. Optimization of statistical measures

I Bounded or unbounded optimization of the statitical
measure to achieve the bound

I Generally, it provides some intuition about the original
problem



Non-asymptotic bounds

I Non-asymptotic bounds like

R∗(n, ε) = max {R : ∃ (dnRe, n) such that Pe(n,max) < ε}

also rely on CI [Polyanskiy, 2010] =⇒ Optimization of
statistical measures also makes sense in the
non-asymtotic regime

I For example, in the BSC

R∗(n, ε) = nCI −
√

nV Q−1(ε) + 1
2 log n + O(1)

V = q(1− q) log2 1− q
q (Channel dispersion)



Bounds and optimization
MI maximization: KL minimization
Convexity
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Channels in ML

Intrepretations of P(Y |X )
I Prior P(X ) and posterior P(Y |X )P(X )
I Latent information (M) and observations (X )
I Active learning (parallel channels)
I ...



Similar problems in IT

I Rate distortion theory (dual of noisy channel coding)
I Gambling and betting [Kelly, 1956]
I Portfolio management
I Compressed sensing [Donoho, 2006]



Rate Distortion Theory

I Rate-distortion code: a (2nR , n) code for source X is
composed by:

1. An encoding function fn : X n → {1, . . . , 2nR}
2. A decoding function gn : {1, . . . , 2nR} → X̂ n

I Distortion: Dn = EX {d(X n, gn(fn(X n)))}
I Distortion measure: d : X × X̂ → R+

I Achievable rate distortion: a pair (R ,D) is achievable
if, ∀ε > 0 there exists a sequence of (2nR , n) codes and an
n0 such that Dn − D < ε when n > n0

I Rate distortion region: the closure of the set of all
achievables (R ,D)

I Rate distortion curve R(D): the infimum of R such
that (R,D) is in the rate distortion region for a given D



Rate Distortion function

R(D) = RI(D) = min
p(x̂ |x):EX ,X̂{d(x ,x̂)}≤D

I(X ; X̂ )

Example: binary source, Bernouilli(p), and Hamming distance

RI(D) =

Hb(p)− Hb(D) if 0 ≤ D ≤ min(p, 1− p)
0 if D > min(p, 1− p)
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Distortion and divergences

I All the distances can be used directly as a distortion
measures: euclidean, Mahalanobis, ...

I Divergences between x and x̂ = g(f (x)) can also be used
as distortion measures: Bregman divergences

dφ(x , x̂) = φ(x)− φ(x̂)− 〈x − x̂ ,∇〉

I φ(x) = ||x ||2: euclidean distance



Quantizer design

I It is easy to obtain g if f is fixed
I It is easy to obtain f if g is fixed
I Lloyd algorithm make iterative estimation of f and g



Quantization

I As channel coding
I Transmitter encodes the (continuous) signal to

(discrete) codes
I Receiver decodes the and recovers that signal

I As feature extraction
I Data pre-processing: to extract features for learning
I To represent the density of data



Vector Quantization1

1See [Villmann and Haase, 2011] for details.



Unsupervised Vector Quantization
I Data points v ∈ V ⊆ Rn

prototypes W = {wk}, k ∈ Z ,wk ∈ Rn

I Representing data points by clustering, via the distance ξ

v 7→ s(v) := arg min
k∈Z

ξ(v ,wk) (1)

I The quantization error (loss function)

EVQ = 1
2

∫
P(v)ξ(v ,ws(v))dv (2)

I Online learning update

∆ws(v) = −ε · ∂ξ(v ,ws(v))
∂ws(v)

(3)



Self-organizing Map (SOM)

I Introducing topological structure A in the cardinality Z
I The neighbourhood function

hSOM
σ (r , r ′) = exp

(
−||r − r ′||A

2σ2

)
(4)

I The prototype mapping

v 7→ s(v) := arg min
r∈A

∑
r ′∈A

hSOM
σ (r , r ′)ξ(v ,wr ′) (5)



Self-organizing Map (SOM)

I The loss function

ESOM = 1
K (σ)

∫
P(v)

∑
r∈A

δs(v)
r

∑
r ′∈A

hSOM
σ (r , r ′)ξ(v ,wr ′)dv

(6)
I Online learning update

∆wr = −εhSOM
σ (s(v), r)∂ξ(v ,wr )

∂wr
(7)



Exploration Machine (XOM)

I A ‘reverse SOM’ with an embedding space wk ∈ S:

EXOM = 1
K (σ)

∫
S

PS(s)
N∑

k=1
δ

k∗(s)
k

N∑
j=1

hXOM
σ (vk , vj)ξS(s,wj)ds

(8)

I k∗(s) := arg min
k=1,...,N

N∑
j=1

hXOM
σ (vk , vj)ξS(s,wj)

I wi = −εhXOM
σ (vi , vk∗(s))∂ξS (s,wi )

∂wi



SOM Simulations

Experiment:
I A chain lattice with 100 units r , and wr ∈ R2

I 107 data points v ∈ [0, 1]2, v1 + v2 = 1
I Prior P(v1) = 2v1

I Decreasing learning rate & neighbourhood range:
εfinal = 10−6, σfinal = 1



SOM Simulations

Figure: Prototype distribution for η-divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



SOM Simulations

Figure: Prototype distribution for β-divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



SOM Simulations

Figure: Prototype distribution for Tsallis divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



SOM Simulations

Figure: Prototype distribution for Renyi divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



SOM Simulations

Figure: Prototype distribution for α-divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



SOM Simulations

Figure: Prototype distribution for γ-divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



SOM Simulations

Figure: Prototype distribution for divergence-based SOM.
(prototype index v.s. w1 of the prototypes w = (w1,w2))



Learning Vector Quantization (LVQ)

I Suppose we have K classes, define the label of v

cv ∈ {0, 1}K ,
∑

j
cv j = 1

I The prototypes wj are also labelled (represented by yj)
I Online learning update

∆ws(v) = −α · ε · ∂ξ(v ,ws(v))
∂ws(v)

(9)

I α = 1 iff. cv = ys(v), otherwise α = −1



Generative Learning Vector Quantization (GLVQ)

I Closest correct prototype

ws+(v) = arg min
k∈Z

ξ(v ,wk) s.t. yk = cv

I Closest incorrect prototype

ws−(v) = arg min
k∈Z

ξ(v ,wk) s.t. yk 6= cv

I The loss function

EGLVQ =
∑

v

ξ(v ,ws+(v))− ξ(v ,ws−(v))
ξ(v ,ws+(v)) + ξ(v ,ws−(v))

(10)



Generative Learning Vector Quantization (GLVQ)

I Online learning update by differentiating EGLVQ

∆ws+(v) = −ε+ · θ+ ·
∂ξ(v ,ws+(v))
∂ws+(v)

∆ws−(v) = −ε− · θ− ·
∂ξ(v ,ws−(v))
∂ws−(v)

(11)

with scaling factors

θ+ =
2ξ(v ,ws−(v))

(ξ(v ,ws+(v)) + ξ(v ,ws−(v))2

θ− = − 2ξ(v ,ws+(v))
(ξ(v ,ws+(v)) + ξ(v ,ws−(v))2



GLVQ Simulations [Mwebaze et al., 2010]

WBC train test AUC (train) AUC (test)
Euclidean 85.00 (0.040) 84.46 (0.041) 0.924 0.918

CS 86.35 (0.003) 85.33 (0.007) 0.923 0.916
Renyi 84.44 (0.059) 84.17 (0.059) 0.916 0.910

Table: Test on the Wisconsin Breast Cancer (WBC) data set.

LC train test AUC (train) AUC (test)
Euclidean 77.99 (0.006) 75.70 (0.004) 0.809 0.787

CS 74.06 (0.005) 69.70 (0.009) 0.825 0.796

Table: Test on the lung cancer (LC) data set.



Hyperparameter Learning in GLVQ

I Denote θ as the parameter of the divergence ξ
I Updating the parameter θ

∆θ = −ε · ∂EGLVQ

∂ξ
· ∂ξ
∂θ

= −ε
(
θ+ ·

∂ξ(v ,ws+(v))
∂θ

+ θ− ·
∂ξ(v ,ws−(v))

∂θ

)
(12)



Hyperparameter Learning in GLVQ

I Recall the γ-divergence

Dγ(p||q) = 1
γ + 1 log F1 −

1
γ

log F2 (13)

where F1 = (
∫

pγ+1dx)
1
γ (
∫

qγ+1dx), F2 =
∫

p · qγdx
I γ → 0: Kullback-Leibler divergence
I γ = 1: Cauchy-Schwarz divergence

DCS(p||q) = 1
2 log (

∫
p2dx)(

∫
q2dx)

(
∫

p · qdx)2 (14)



Hyperparameter Learning in GLVQ

Figure: γ control on the IRIS dataset

I Average classification accuracy: 78.34% (KL) v.s.
95.16% (CS)

I Best value γfinal = 0.9016, yielding average accuracy
95.89%



Connecting the Quantizer and Classifier2

2See [Nguyen et al., 2009] for details.



Bayes Risk

I Given the data points v ∈ V with labels yv ∈ {−1, 1}:
I the quantizer w = Q(v), Q ∈ Q
I the classifier y = γ(w), γ ∈ Γ

I φ-risk (φ is a margin-based convex loss function)

Rφ(γ,Q) = Eφ(yvγ(w)) (15)

I empirical φ-risk:

R̂φ(γ,Q) = 1
|V |

∑
v

∑
w
φ(yvγ(w))Q(w |v) (16)

I optimal φ-risk: Rφ(Q) = infγ∈Γ Rφ(γ,Q)
I Bayes Risk (0-1 loss): RBayes(γ,Q) = E [I(yvγ(w) < 0)]



Connecting the φ-risk and f -divergence

I Define measures with prior p = P(y = 1) and
q = P(y = −1)

µ(w) := P(y = 1,w) = p
∫

v
Q(w |v)dP(v |y = 1)

π(w) := P(y = −1,w) = q
∫

v
Q(w |v)dP(v |y = −1)

I Rewrite the f -divergence as

If (µ, π) :=
∑
w
π(w)f

(
µ(w)
π(w)

)
(17)

I Rφ(Q) = −If (µ, π) with f (u) := − infα(φ(−α) + φ(α)u)



Approximation & Estimation Error
I Restricting the searching space

C1 ⊆ C2 ⊆ ... ⊆ Cn ⊆ Γ,D1 ⊆ D2 ⊆ ... ⊆ Dn ⊆ Q

I empirical solution

(γ∗n ,Q∗n) := arg min
(γ,Q)∈(Cn,Dn)

R̂φ(γ,Q) (18)

I Minimum Bayes risk:

R∗Bayes := inf
(γ,Q)∈(Γ,Q)

RBayes(γ,Q) (19)

I Excess Bayes risk:

RBayes(γ∗n ,Q∗n)− R∗Bayes (20)



Approximation & Estimation Error

I Approximation error

E0(Cn,Dn) := inf
(γ,Q)∈(Cn,Dn)

{Rφ(γ,Q)} − R∗φ (21)

with R∗φ := inf(γ,Q)∈(Γ,Q) Rφ(γ,Q)
I Estimation error

E1(Cn,Dn) := E sup
(γ,Q)∈(Cn,Dn)

|Rφ(γ,Q)− R̂φ(γ,Q)| (22)

approximation condition : lim
n→∞
E0(Cn,Dn) = 0

estimation condition : lim
n→∞
E1(Cn,Dn) = 0 in probability



Bayes Consistency

I B1: φ is continuous, convex, and classification-calibrated
I B2: Mn :=

maxy∈{−1,1} sup(γ,Q)∈(Cn,Dn) supw∈W |φ(yγ(w))| <∞ for
every n

Theorem (Bayes Consistency)
Let φ a loss function satisfying B1 and B2 and inducing the
f -divergence of the form f (u) = −c min(u, 1) + au + b with
some c > 0 and a, b ∈ R s.t. (a − b)(p − q) ≥ 0. If {Cn} and
{Dn} satisfy the approximation & estimation conditions, then
the empirical estimation procedure is universally consistent:

lim
n→∞

RBayes(γ∗n ,Q∗n) = R∗Bayes in probability (23)



Bayes Consistency (Proof)

Lemma
Let φ satisfies B1 and B2 and induces the f -divergence of the
form f (u) = −c min(u, 1) + au + b for some c > 0 and
a, b ∈ R s.t. (a− b)(p− q) ≥ 0. Then for any (γ,Q) ∈ (Γ,Q)

c
2[RBayes(γ,Q)− R∗Bayes ] ≤ Rφ(γ,Q)− R∗φ (24)

I From B2 (we sample n data points to estimate the
empirical risk), sup(γ,Q)∈(Cn,Dn) |R̂φ(γ,Q)− Rφ(γ,Q)|
varies by at most 2Mn/n if we change one training
example (vi , yv ) to (v ′i , y

′

v )



Bayes Consistency (Proof)

I Using McDiamid’s Inequality (with probability at least
1− δ):∣∣∣∣∣∣ sup

(γ,Q)∈(Cn,Dn)
|R̂φ(γ,Q)−Rφ(γ,Q)|−E1(Cn,Dn)

∣∣∣∣∣∣ ≤ Mn

√
2 log(1/δ)

n
(25)

I Suppose (γ†n,Q†n) := arg inf
(γ,Q)∈(Cn,Dn)

Rφ(γ,Q), define the error

err(γ,Q) := |Rφ(γ,Q)− R̂φ(γ,Q)|



Bayes Consistency (Proof)

I Apply the lemma:
c
2[RBayes(γ∗n ,Q∗n)− R∗Bayes ] ≤ Rφ(γ,Q)− R∗φ
≤err(γ∗n ,Q∗n) + err(γ†n,Q†n) + |Rφ(γ†n,Q†n)− R∗φ|

+ R̂φ(γ∗n ,Q∗n)− R̂φ(γ†n,Q†n)

≤2E1(Cn,Dn) + 2Mn

√
2 log(2/δ)

n + E0(Cn,Dn)

(26)

I The theorem is proved by n→∞.



Conclusion

I Some IT stuff is still valid in ML
I Quantizer also influences performance of learning tasks
I
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