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Machine Learning and Information Theory

» ML techniques in IT: BP in turbo decoding and LDPC
» |T in ML: Information Bottleneck, feature extraction, ..

» Similar problems: Covariate shift and mismatched
decoding, ...



A Mathematical Theory of Communication

A communication system model [Shannon, 1948]
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A particular noisy channel model is the DMC (Discrete
Memoryless Channel), characterized by (X, P(Y|X),))
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Reliable communications

Example: transmitting one bit over the BSC Channel
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Repetition code and majority voting, g = 0.15
»n=1 P.=qg=0.15
» n=3, P. = q¢>+3¢*p = 0.0607
» n=5, P, =¢° +5q*p + 10¢°p? = 0.0266
> n— 00, Po =Y\ (7)p'q”" — 0



Limiting the rate

R_ 5 _ # of transmitted symbols

n # of channel uses
It is possible to lower P, fixing R and increasing n = Rk?

Example: Best Pewith R=3=2=3="..




Achievable rate and channel capacity

v

Code: a (k, n) code for the channel (X, P(Y|X),)) is
composed by:

1. An index set {1,...,2k}

2. An encoding function f, : {1,...,2K} — &"

3. A decoding function g, : V" — {1,...,2k}

- (i) = maxicqse) Priga(Y") = 11X = £(0)

-----

» Achievable rate: a rate R is achievable if, Ve > 0 there
exists a sequence of ([nR], n) codes and an ng such that
P.(n,max) < e when n > ng

» Channel capacity: the capacity of a channel, C is the
supremum of all achievable rates



Random coding bound

v

f, picked randomly: (i) iid from p(z)
gn: ML (MAP) decoder

P. averaged over all the possible encoders can be
bounded [Gallager, 1965]

v

v

Pe S e—n(_PR-l-EO(PaP(Z))) < e—nE(R7p(z)) < e_nE(R)

E(R, p(2)) = max[—pR + Eo(p, p(2))]
E(R) = max E(R. p(2))

v

If R < I(X;Y)|px)=p(z) then E(R,p(z)) > 0. If we
define C; = max,() I(X; Y), then

C=¢



Mutual Information, KL Divergence and Entropy

» Relative entropy or Kullback-Leibler divergence

PX) _ £ fiog PX)
D(pllg) = >_ p(x)log q(X)—Ep{lg }

xeX q(X)
» Mutual information:
P(x.y) }
1(X;Y)= D(p(x, X =E lo
(X ¥) = Dlotx 1) Ip(x)oln) = v flog £,
Convex function of p(y|x) if p(x) is fixed.

Concave function of p(x) if p(y|x) is fixed.
» Autoinformation or entropy (diferential entropy):

HIX) = I(X: X) = Ex {Iog p(lx)} (h(X) = I(X: X))

I(X; Y) = H(X) = H(X|Y) = H(Y) — H(Y|X)



The IT game

1. Performance bounds
» The goal is to obtain lower or upper bound on the
performance on hard (sometimes NP-hard) problems
» Bounds based on statistical measures (D, /, H, ...)
» Some of the bounds are asymptotic
» Generally, it does not say anyting about the solution to
the problem

2. Optimization of statistical measures

» Bounded or unbounded optimization of the statitical
measure to achieve the bound

» Generally, it provides some intuition about the original
problem



Non-asymptotic bounds

» Non-asymptotic bounds like
R*(n,e) = max{R : 3 ([nR], n) such that P.(n, max) < €}

also rely on C; [Polyanskiy, 2010] = Optimization of
statistical measures also makes sense in the
non-asymtotic regime

» For example, in the BSC

R*(n,€) = nC; — VaVQ1(e) + ; log n+ 0(1)

1—
V =gq(1 — q)log® -4 (Channel dispersion)
q



Bounds and optimization

MI maximization: KL minimization
Convexity
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Channels in ML

Intrepretations of P(Y|X)

Prior P(X) and posterior P(Y|X)P(X)
Latent information (M) and observations (X)
Active learning (parallel channels)

v

v

v



Similar problems in IT

v

Rate distortion theory (dual of noisy channel coding)
Gambling and betting [Kelly, 1956]
Portfolio management

v

v

v

Compressed sensing [Donoho, 2006]



Rate Distortion Theory

» Rate-distortion code: a (2", n) code for source X is
composed by:
1. An encoding function f, : X" — {1,...,2"R}
2. A decoding function g, : {1,...,2"R} — X"
» Distortion: D, = Ex {d(X", g,(f,(X™)))}
» Distortion measure: d : X x X — R+t

» Achievable rate distortion: a pair (R, D) is achievable
if, Ve > 0 there exists a sequence of (2R n) codes and an
no such that D, — D < € when n > nqg

» Rate distortion region: the closure of the set of all
achievables (R, D)

» Rate distortion curve R(D): the infimum of R such
that (R,D) is in the rate distortion region for a given D



Rate Distortion function

A

R(D) = R/(D) = in I(X: X
(D) = k(D) p(51x):Ex. p1d(x.2)}<D (X:X)

Example: binary source, Bernouilli(p), and Hamming distance

Ri(D) =

Hy(p) — Hp(D) if 0 < D < min(p,1— p)
0 if D> min(p,1—p)

R(D)




Distortion and divergences

» All the distances can be used directly as a distortion
measures: euclidean, Mahalanobis, ...

» Divergences between x and X% = g(f(x)) can also be used
as distortion measures: Bregman divergences

d¢(XaX) = ¢(X) - ¢()%) - <X - X, V>

» ¢(x) = ||x||>: euclidean distance



Quantizer design

» It is easy to obtain g if f is fixed
» |t is easy to obtain f if g is fixed

» Lloyd algorithm make iterative estimation of f and g



Quantization

» As channel coding
» Transmitter encodes the (continuous) signal to
(discrete) codes
» Receiver decodes the and recovers that signal
» As feature extraction

» Data pre-processing: to extract features for learning
» To represent the density of data



Vector Quantization?

!See [Villmann and Haase, 2011] for details.



Unsupervised Vector Quantization

» Data points ve V C R”
prototypes W = {w,}, k € Z, wy € R"

» Representing data points by clustering, via the distance &

v s(v) :=argminé(v, wy) (1)
kezZ

» The quantization error (loss function)

1
Evo = 5 [ PIVIE(v, wigy)dv 2)
» Online learning update

) 8£(v, WS(V))

B = = )



Self-organizing Map (SOM)

» Introducing topological structure A in the cardinality Z

» The neighbourhood function

PO (r, ) = exp ("'"') (@)

202
» The prototype mapping

v s(v) :=argmin > h2M(r, F)¢(v,wy)  (5)

reA r'cA



Self-organizing Map (SOM)

» The loss function

Esom = K(la) / P(v) 3" 65 S m3M(r, r)é(v, wy)dv

reA r'eA
(6)

» Online learning update

o&(v, w,)

Aw, = —eh2°M(s(v), r) ow,

(7)



Exploration Machine (XOM)

» A ‘reverse SOM’ with an embedding space wy € S:

1 N . N
Exom = e [, Ps() 32 6 S B (v, v)es(s, wy)ds
K(o) Js k=1 =1

(8)
N
> k*(s) == argmin Y KM (v, v))és(s, wy)
k=1,....N j=1
> W = €h§OM(Vi, Vk*(s))aésa(:,’im)



SOM Simulations

Experiment:
» A chain lattice with 100 units r, and w, € R?
» 107 data points v € [0,1]%, vy + o =1
» Prior P(vy) = 2w

» Decreasing learning rate & neighbourhood range:
€final = 107°, 0pina = 1
final v Yfinal



SOM Simulations
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Figure: Prototype distribution for n-divergence-based SOM.

(prototype index v.s. wy of the prototypes w = (wg, w))



SOM Simulations
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Figure: Prototype distribution for 3-divergence-based SOM.
(prototype index v.s. wj of the prototypes w = (wy, wy))



SOM Simulations
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Figure: Prototype distribution for Tsallis divergence-based SOM.
(prototype index v.s. w; of the prototypes w = (w1, w»))



SOM Simulations
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Figure: Prototype distribution for Renyi divergence-based SOM.
(prototype index v.s. wj of the prototypes w = (w1, w»))



SOM Simulations
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Figure: Prototype distribution for a-divergence-based SOM.
(prototype index v.s. w; of the prototypes w = (wq, w»))



SOM Simulations
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Figure: Prototype distribution for y-divergence-based SOM.
(prototype index v.s. w; of the prototypes w = (w1, w2))



SOM Simulations
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Figure: Prototype distribution for divergence-based SOM.
(prototype index v.s. w; of the prototypes w = (wq, ws))



Learning Vector Quantization (LVQ)

» Suppose we have K classes, define the label of v

¢, €{0,1} > ¢;=1
Jj

v

The prototypes w; are also labelled (represented by y;)

v

Online learning update

8§(V, Ws(,,))

e (9)

AWS(V) = —Q-€-

v

a = 1iff. ¢, = ys(), otherwise o = —1



Generative Learning Vector Quantization (GLVQ)

» Closest correct prototype

Wsi(y) = argginf(v, wy) s.t. Yk = ¢,

» Closest incorrect prototype

Ws—(v) = af%er?inf(V, wy) s.t. yi 7 ¢,

» The loss function

Sy, we ) = E(v, we-(y))
EGLVQ B ; f(V, Ws*(v)) + f(va Ws*(v)) (10)



Generative Learning Vector Quantization (GLVQ)

» Online learning update by differentiating Egivg

_€+ . 6+ ) 8§(v, W5+(,,))

AW5+(V) — aws+(v)
a s—(v
PP (A
s—(v)

with scaling factors

2§(v, Ws—(,,))
(5("7 Ws*(v)) + f(V, Ws—(v))2

6" =

28(v, wsr(y))

0~ — —
(f(v, Ws+(v)) + §(V7 Ws*(v))2



GLVQ Simulations [Mwebaze et al., 2010]

WBC train test AUC (train) AUC (test)
Euclidean  85.00 (0.040) 84.46 (0.041) 0.924 0.918
cS 86.35 (0.003) 85.33 (0.007) 0.923 0.916
Renyi 84.44 (0.059) 84.17 (0.059) 0.916 0.910

Table: Test on the Wisconsin Breast Cancer (WBC) data set.

LC train test AUC (train) AUC (test)
Euclidean  77.99 (0.006) 75.70 (0.004) 0.809 0.787
CS 74.06 (0.005) 69.70 (0.009) 0.825 0.796

Table: Test on the lung cancer (LC) data set.



Hyperparameter Learning in GLVQ

» Denote 6 as the parameter of the divergence &

» Updating the parameter 6

OEave 06

3 00
- <e+ O W) | KLY, Ws(v))>
(

AO = —¢

0 6
12)



Hyperparameter Learning in GLVQ

» Recall the -divergence

1
D = log /1 — — log F; 13
,(pllq) 7_I_lgl 7gz (13)
where F; = ([ p7+1dx) (/@ tdx), F, = [p-q'dx
» v — 0: Kullback-Leibler divergence
» v = 1: Cauchy-Schwarz divergence

Des(plla) = 3 log ’ f‘fj’g@;’; ) (1)




Hyperparameter Learning in GLVQ

T

Y
T

divergence parameter
o
T

earning time:

Figure: v control on the IRIS dataset

» Average classification accuracy: 78.34% (KL) v.s.
95.16% (CS)

» Best value vf,, = 0.9016, yielding average accuracy
95.89%




Connecting the Quantizer and Classifier?

2See [Nguyen et al., 2009] for details.



Bayes Risk

» Given the data points v € V with labels y, € {—1,1}:
» the quantizer w = Q(v), Q € Q
» the classifier y = y(w), vy €T
» ¢-risk (¢ is a margin-based convex loss function)
Ro(7, Q) = Eo(yvy(w)) (13)
» empirical ¢-risk:
R (7. Q |V|ZZ¢ yy(w w|v) (16)
» optimal ¢-risk: Ry(Q) = inf,cr Ry(7, Q)
» Bayes Risk (0-1 loss): Rgayes(7, Q) = E[I(yvy(w) < 0)]



Connecting the ¢-risk and f-divergence

» Define measures with prior p = P(y = 1) and
q=P(y=-1)
p(w) == P(y = 1.w) = p | Q(wlv)dP(vly = 1)
n(w) == P(y = —L,w) = q [ Q(w|v)dP(vly = ~1)

» Rewrite the f-divergence as

) = Satwyr (M) )

w m(w)

» Rs(Q) = —le(p, m) with f(u) := —info(P(—a) + ¢(a)u)



Approximation & Estimation Error
» Restricting the searching space
GicCCc...cC,clD,CD,C...CD,CQ

» empirical solution

A

(7, @) :== argmin  Ry(v, Q) (18)
(’Y,Q)E(C'H,D")

» Minimum Bayes risk:

Ri = inf  Reaes(, 19
Bayes ('y,QI)G(F,Q) Bay (fy Q) ( )

» Excess Bayes risk:

RBayes('Yi, Q:) - Rgayes (20)



Approximation & Estimation Error

» Approximation error

&(CDr) = inf (R QY- Ry (2D)

with R(Z = inf(%(\))e(r’Q) R¢(’y, Q)
» Estimation error

E1(CnDy) =E  sup  |Rs(7,Q) — Rs(7, Q)| (22)
(7,RQ)€(Cn,Dn)

approximation condition :nli_)rrgO &(Cn, Dp) =0

estimation condition : nli_}ngO &1(Cn, D,) =0 in probability



Bayes Consistency

» B1: ¢ is continuous, convex, and classification-calibrated
» B2: M, =

MaXye{-1,1} SUP(,,Q)e(Cn,Dn) SUPwew [o(yy(w))] < oo for
every n

Theorem (Bayes Consistency)

Let ¢ a loss function satisfying B1 and B2 and inducing the
f-divergence of the form f(u) = —cmin(u,1) + au + b with
somec >0 anda,be R st (a—b)(p—q)>0. If{C,} and
{D,} satisfy the approximation & estimation conditions, then
the empirical estimation procedure is universally consistent:

Jim RBayes(Vps Q) = Rpayes in probability (23)



Bayes Consistency (Proof)

Lemma
Let ¢ satisfies B1 and B2 and induces the f-divergence of the
form f(u) = —cmin(u,1) + au + b for some ¢ > 0 and

a,beR st (a—b)(p—q)>0. Then forany (v, Q) € (', Q)

S[Ranes(, Q) = Ril < Ro(1,Q) = R} (29)

» From B2 (we sample n data points to estimate the
empirical risk), sup(, q)e(c,.p.) [Rs(7; Q) — Ro(7; Q)]
varies by at most 2M,,/n if we change one training
example (v;,y,) to (v;,))



Bayes Consistency (Proof)

» Using McDiamid's Inequality (with probability at least

1—-9):
A 2log(1/c
up  [Ro(7, Q—Rul(, Q) ~Ex(Car Dy)| < M/ 2B
(7, Q)€(Cn,Dn) n
(25)
» Suppose (7}, Q1) := arginf R4(7, Q), define the error

(77 Q)E(CH7DH)

N

err(7, Q) :== |Rs(7, Q) — Ry(, Q)|



Bayes Consistency (Proof)

» Apply the lemma:

~[Reoes (73 @) = Réyes] < Rol3, Q) = K3
<err(3;, @;) + err(3), Q) + Rs(7} Q}) — Ry
Ry @) = Ri(h, Q) (26)

2log(2/9)

§2gl(cn; Dn) + 2/\/In + 50(Cn7 Dn)

» The theorem is proved by n — oo.



Conclusion

» Some IT stuff is still valid in ML

» Quantizer also influences performance of learning tasks

>
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